Supplementary Material ## **Table of Contents** | Table 1: Studies included and study characteristics | Page 2 | |---|---------| | Table 2: Studies excluded | Page 20 | | References for the two table | Page 22 | | Supplementary Figures $1-8$: Forest plots of most significant SNPs | Page 36 | | Supplementary Figures 9 – 15: Significant subgroup analyses | Page 44 | | Supplementary Figures 16 – 20: Sensitivity analyses forest plots | Page 51 | | Details of data from our lab | Page 56 | | Previous meta-analyses | Page 57 | | References | Page 58 | Table 1: Studies included and study characteristics | Gene | Study | Ancestry | Type of study | Sample
size | SNPs included in the study | Diag | gnosis | crite | eria | | | Hardy
Weinber | Notes | |-----------|--------------------------------------|---------------------------------|-----------------|-------------------------------|----------------------------|----------|----------------|-------------------|----------|----------------|----------------------|------------------|--| | | | | | | | AD
OS | AD
OS
-G | A
D
I-
R | CA
RS | DS
M-
IV | DS
M
III-
R | Equilibri
um | | | MTHF
R | Park et al., 2014 ¹ | Korean | Case
Control | 251 cases,
425
controls | rs1801133 | | | | | X | | Yes | | | | Liu et al.,
2011 ² | Caucasian | Case
Control | 512 cases,
384
controls | rs1801133,
rs1801131 | X | | X | | X | | Yes | Includes a proband from 205 simplex families and a random proband from 307 multiple x families | | | Guo et al.,
2012 ³ | Chinese
(Han) | Case
Control | 186 cases,
186
controls | rs1801133 | | | | | | | Yes | | | | dos Santos et al., 2010 ⁴ | European
derived
(Brazil) | Case
Control | 151 cases,
100
controls | rs1801133 | | | X | | | | Yes | | | | James et al., 2006 ⁵ | Caucasian (97%) | Case
Control | 356 cases,
205
controls | rs1801133,
rs1801131 | X | | X X | Yes | |-----|---------------------------------------|-------------------------------|-----------------|--------------------------------|---------------------------------------|---|---|-----|--| | | Pasca et al., 2009 ⁶ | Caucasian
(Romania
n) | Case
Control | 39 cases,
80
controls | rs1801133 | | | X | Yes | | | Mohammad et al., 2009 ⁷ | Indian | Case
Control | 138 cases,
138
controls | rs1801133 | | | X | Yes | | | Divyakolu et al., 2013 ⁸ | Indian | Case
Control | 50 cases,
50
controls | rs1801133 | | | | HWE not given, manuall y checked (Yes) | | | Boris et al.,
2004 ⁹ | Caucasian | Case
Control | 168 cases,
5389
controls | rs1801133,
rs1801131 | | | X | Yes | | | Schmidt et al., 2011 ¹⁰ | Mixed | Case
Control | 429 cases,
278
controls | rs1801133 | X | X | | Yes | | EN2 | Gharani et al.,
2004 ¹¹ | Caucasian
(AGRE
sample) | Family based | 167
families | rs1861972,
rs1861973,
rs3735653 | | X | | Yes | | | Yang et al., 2010 ¹² | Chinese
(Han) | Case
Control | 193 cases,
309
controls | rs1861972,
rs1861973 | | | X | Yes | | | Sen et al.,
2010 ¹³ | Indian | Family
based | families of
ASD
children | rs1861973,
rs3735653 | | | X | Yes | | | | | comprisin
g of 105
trios and
23 duos | | | | | | | |------------------------------|---------------------------------------|-----------------|---|-------------------------|---|---|---|-----|---| | Yang e
2008 ¹⁴ | et al., Chinese (Han) | Case
Control | 184 cases,
634
controls | rs1861972,
rs1861973 | | X | | Yes | Controls made of two groups, both the groups were combine d in the analysis | | Prandir
al., 200 | | Family based | 227
families | rs1861972 | | | X | | | | Benaye
al., 200 | ed et Caucasian | Family based | 518
families | rs1861972,
rs1861973 | X | | | Yes | | | Warrie
2014 | r et al., Caucasian | Case
Control | 118 cases,
412
controls | rs1861972 | | X | | Yes | | | Chakra
et al., 2 | | Case
Control | 174 cases,
349
controls | rs1861972,
rs3735653 | | X | | Yes | | | Zhong
2003 ¹⁸ | et al., Caucasian
(AGRE
sample) | Family based | 204
families | rs3735653 | X | | X | Yes | | | GRIK2 | Jamain et al., 2002 ¹⁹ | European
and
American | Family based | 107 trios | rs2227281,
rs2227283 | | X | | X | Yes | | |-------|--------------------------------------|-----------------------------|-----------------|------------------------------------|-------------------------|---|---|---|---|-----|------------------------------| | | Dutta et al.,
2007 ²⁰ | Indian | Family based | 101
probands,
180
parents | rs2227281,
rs2227283 | | X | X | X | Yes | | | | Shuang et al., 2004 ²¹ | Chinese (Han) | Family based | 174 families | rs2227281,
rs2227283 | | | | X | | | | | Kim et al., 2007 ²² | Korean | Family based | 126 trios | rs2227281,
rs2227283 | X | X | | X | Yes | | | COMT | Limprasert et al.,2014 ²³ | Thai | Family based | 188 cases,
250
controls | Val158Met
(rs4680) | | | | X | Yes | Only Case- Control data used | | | James et al., 2006 ⁵ | Mixed | Case
Control | 360 cases
and 205
controls | Val158Met
(rs4680) | | X | X | X | Yes | | | | Guo et al.,
2013 ²⁴ | Chinese
Han | Case
Control | 186 cases,
186
controls | Val158Met
(rs4680) | | | X | X | Yes | | | | Karam et al., 2013 ²⁵ | Egyptian | Case
Control | 80 cases,
100
controls | Val158Met (rs4680) | | | X | X | Yes | | | TPH2 | Virmiya et al., 2001 ²⁶ Coon et al., 2005 ²⁷ | Mixed
(Caucasia
n) | Family based Case Control | 88 cases, 95 controls | Val158Met
(rs4680) | X | X | X | X | HWE not | This study used haplotyp e relative risk and as a result, the data was treated as a case-control study | |-------------|--|--------------------------|----------------------------|-------------------------------------|-----------------------|---|---|---|---|---|--| | | Ramoz et al., | Mixed | Family | 352 | rs11179000 | | X | | | given,
manuall
y
checked
(Yes)
Yes | | | | 2006 ²⁸ Singh et al., 2013 ²⁹ | Indian | Case
Control | families 136 cases, 165 controls | rs11179000 | | | X | | Yes | | | MACR
OD2 | Curran et al., 2011 ³⁰ | Mixed | Case
Control | 1170
cases,
35307
controls | rs4141463 | | X | X | | Yes | | | | Prandini et al., 2008 ¹⁵ | Italian | Family based | 227 families | rs4141463 | | | | | X | Yes | | |-----------|--|--|--|-------------------------------|----------------|---|---|---|---|---|------|---| | | Anney et al., 2010 ³¹ | Mixed | Family based | 1158 families | rs4141463 | X | X | | | | Yes | | | DRD3 | Krom et al., 2009 ³² | Dutch | Case
Control | 254 cases,
404
controls | rs167771 | | | | X | | Yes | | | | Toma et al., 2013 ³³ | Spanish | Case
Control | 326 cases,
350
controls | rs167771 | | | | X | | Yes | | | HTR2
A | Veenstra-
VanderWeele
et al., 2002 ³⁴ | Caucasian,
African
American,
Asian
American,
Hispanic | Family based | 115 trios | rs6311, rs6314 | | | | X | | NA | | | | Guhathakurta et al., 2009 ³⁵ | Indian | Family
based and
Case
Control | 97 trios | rs6311, rs6314 | | | | X | | Yes | Only
Family
based
data
used | | | Hranilovic et al., 2010 ³⁶ | Croation | Case
Control | 103 cases,
214
controls | rs6311, rs6314 | | | | X | | Yes | | | | Cho et al., 2007 ³⁷ | Korean | Family based | 26 trios | rs6311 | | | X | | | Yes | | | | Smith et al.,
2014 ³⁸ | Mixed | family based | 158 trios | rs6311, rs6314 | X | | | X | | N.A. | | | | Nyffeler et al., 2014 ³⁹ | Caucasian | Case
Control | 76 cases
99
controls | rs6311 | X | X | | | | Yes | | | STX1A | Durdiaková
et al., 2014 ⁴⁰ | Caucasian | Family based | 479 cases,
650
controls | rs4717806,
rs6951030 | | | | | X | Yes | | |-------------|--|-----------|-----------------|-------------------------------|-------------------------|---|---|---|---|-----------------------|-----|--| | | Nakamura et al., 2011 ⁴¹ | Japanese | Family based | 378
individual
s | rs4717806,
rs6951030 | | | X | | DS
M-
IV-
TR | Yes | | | | Nakamura et al., 2008 ⁴² | Caucasian | Family based | 249 trios | rs4717806,
rs6951030 | X | | X | | | Yes | | | | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs4717806,
rs6951030 | | | | | X | Yes | | | BDNF | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs6265 | | | | | X | Yes | | | | Cheng et al., 2009 ⁴³ | Chinese | Case
Control | 174 cases,
349
controls | rs6265 | | | X | X | X | Yes | | | | Nishimura et al., 2007 ⁴⁴ | AGRE | Family based | 104 trios | rs6265 | | | | | X | Yes | | | ITGB3 | Singh et al.,
2013 ²⁹ | Indian | Case
Control | 139 cases,
165
controls | rs5918 | | | | X | X | Yes | | | | Cochrane et al., 2010 ⁴⁵ | Irish | Family based | 177 trios | rs5918 | | X | X | | | Yes | | | | Coutinho et al., 2007 ⁴⁶ | Portugese | Family based | 186 trios | rs5918 | | | X | X | X | NA | | | CNTN
AP2 | Sampath et al., 2013 ⁴⁷ | Mixed | Family based | 2051 families | rs7794745,
rs2710102 | X | | X | | | Yes | | | | Toma et al., 2013 ⁴⁸ | Spanish
| Case
Control | 322 cases,
524
controls | rs7794745,
rs2710102 | | | | | X | Yes | | | | Li et al.,
2010 ⁴⁹ | Chinese | Family based | 322
individual
s | rs7794745 | | | | X | NA | | |------|--|------------------|----------------------------|-------------------------------|-------------------------------------|---|---|---|---|-----|--| | RELN | Sharma et al., 2013 ⁵⁰ | South
African | Case
Control | 136 cases,
208
controls | rs736707, rs362691 | | | | X | Yes | | | | Fu et al.,
2013 ⁵¹ | Chinese (Han) | Case
Control | 205 cases,
210
controls | rs2073559 | | | | X | Yes | | | | He et al., 2011 ⁵² | Chinese (Han) | Family based, Case Control | 232 cases,
283
controls | rs736707,
rs362691,
rs2073559 | | | | X | NA | | | | Dutta et al., 2008 ⁵³ | Indian | Family based, Case Control | 102 cases,
283
controls | rs362691 | | | X | X | Yes | | | | Li et al.,
2008 ⁵⁴ | Chinese (Han) | Case
Control | 213 cases,
160
controls | rs736707, rs362691 | | | | X | Yes | | | | Bonora et al., 2003 ⁵⁵ | Mixed | Family based | 342 cases,
194
controls | rs362691, GGC
repeat | X | X | | | NA | | | | Serajee et al., 2006 ⁵⁶ | Mixed | Family based | 174 cases,
349
controls | rs736707, rs362691 | | X | | | Yes | | | | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs736707 | | | | X | Yes | | | | Warrier et al.,
2014 | Caucasian | Case
Control | 118 cases,
412
controls | rs736707 | | | | | Yes | | | | Persico et al., 2001 ⁵⁷ | American/
Italian | Family
based and
Case
Control | 95 cases,
186
controls | GGC repeat | | | | X | Yes | | |--------------|---|----------------------|--|--------------------------------------|-------------------------|---|---|---|---|-----|--| | | Krebs et al., 2002 ⁵⁸ | Mixed | Family based | 167
families | GGC repeat | | X | | X | NA | | | | Zhang et al., 2002 ⁵⁹ | Canada | Case
Control | 126 cases,
347
controls | GGC repeat | X | X | | | Yes | | | | Li et al.,
2004 ⁶⁰ | Mixed | Family based | 107
families | GGC repeat | X | X | | | NA | | | | Ashley-Koch et al., 2007 ¹⁴⁴ | Caucasian | Family based | 470 | rs2073559 | | | | X | Yes | | | | Dutta et al.,
2007 ⁶¹ | Indian | Family based/Cas e Control | 55 cases,
80
controls | rs736707, GGC
repeat | | | X | X | Yes | | | SLC25
A12 | Ramoz et al., 2004 ⁶² | Egyptian | Family based | 2000
(710,1280) | rs2056202 | X | | | X | NA | | | | Segurado et al., 2005 ⁶³ | Irish | Family based | 158 trios | rs2292813,
rs2056202 | | | | X | NA | | | | Blasi et al.,
2006 ⁶⁴ | Caucasian | Family
based/Cas
e Control | 531
individual
s (261,
174) | rs2056202 | | | | X | NA | | | | Chien et al.,
2010 ⁶⁵ | Chinese (Han) | Case
Control | 465 cases,
450
controls | rs2056202,
rs2292813 | X | | | X | Yes | | | | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs2056202 | | | | X | Yes | | | | Correia et al., | Italian | Case | NA | rs2056202 | | X | X | Yes | | |---------|----------------------------|-------------|------------|-------------|-------------------|----|---|----|-----|---------| | | 2006 ⁶⁶ | | Control | | | | | | | | | | Palmieri et | Caucasian | Family | 197 | rs2056202, | | | | NA | | | | al., 2010 ⁶⁷ | | based | families | rs2292813 | | | | | | | | Ramoz et al., | AJMGB | Family | 334 | rs2292813 | X | | X | NA | | | | 2008^{68} | | based | families | | | | | | | | | Durdiakova | Caucasian | Case | 117 cases, | rs2056202 | | | X | Yes | | | | et al., 2014 ⁶⁹ | | Control | 412 | | | | | | | | | , | | | controls | | | | | | | | PON1 | Pasca et al., | Romanian | Case | 50 cases, | rs662, rs854560 | | | X | Yes | | | | 2010^{70} | s | Control | 85 | , | | | | | | | | | | | controls | | | | | | | | | D'Amelio et | American | Case | 177 cases, | rs662, rs854560 | X | X | X | Yes | Only | | | al., 2005 ⁷¹ | caucasian/ | Control/Fa | 180 | , | | | | | Case | | | , | Italians | mily based | controls | | | | | | Control | | | | | | (Italians), | | | | | | data | | | | | | 107 cases, | | | | | | used | | | | | | 376 | | | | | | | | | | | | controls | | | | | | | | | | | | (American | | | | | | | | | | | | s) | | | | | | | | ASMT | Melke et al., | Caucasian | Case | 278 cases, | rs4446909, rs5989 | | X | X | Yes | | | 1101/11 | 2008 ⁷² | | Control | 255 | 681 | | | 11 | | | | | 2000 | | Control | controls | 001 | | | | | | | | Toma et al., | Finnish, | Case | 127 cases, | rs4446909, rs5989 | X | X | X | Yes | | | | 2007 ⁷³ | Italian and | Control | 100 | 681, rs6644635 | 11 | | 11 | 105 | | | | 2007 | European | Control | controls | 001, 150011055 | | | | | | | | | (IMGSAC | | (Finnish), | | | | | | | | | | (INGSAC | | 69 cases, | | | | | | | | | | ' | | 90 cases, | | | | | | | | | | | | controls | (Italian), | | | | | | | | | Wang et al., 2013 ⁷⁴ | Chinese | Case
Control | 194 cases,
192
controls
(European
-
IMGSAC)
398 cases,
437
controls | rs4446909, rs5989
681, rs6644635 | | | | X | X | AB
C | Yes | | |------------|--------------------------------------|--------------------------|---|---|-------------------------------------|---|---|---|---|---|---------|-----|--| | ADA | Hettinger et al., 2008 ⁷⁵ | NA | Case
Control | 125 cases,
167
controls | rs7359837 | X | | X | | | | Yes | | | | Bottini et al., 2001 ⁷⁶ | Italian | Case
Control | 118 cases,
126
controls | rs7359837 | | | | | X | | Yes | | | | Persico et al., 2000 ⁷⁷ | Italian | Case
Control
and
Family
based | 91 cases,
152
controls | rs7359837 | | | | | X | | Yes | | | SHAN
K3 | Sykes et al., 2009 ⁷⁸ | NA
(IMGSAC
cohort) | Family
based and
case-
pseudocon
trol | 308 families | rs9616915 | | X | | | | | Yes | Case-
pseudoc
ontrol
data was
used for
analysis | | | Shao et al., 2014 ⁷⁹ | Chinese | Case
Control | 212 cases,
636
controls | rs9616915 | | | | | X | | Yes | | | | Waga et al.,
2011 ⁸⁰ | Japanese | Case
Control | 128 cases,
228
controls | rs9616915 | | | | X | HWE
not
given,
manuall
y
checked
(Yes) | | |------|-------------------------------------|---------------------|--|-------------------------------|-------------------------------------|---|---|---|---|--|-----------------------------| | MAOA | Verma et al., 2014 ⁸¹ | Indian | Case
Control | 194 cases,
227
controls | uvntr | | | X | X | Yes | | | | Salem et al.,
2013 ⁸² | Egyptian | Case
Control | 53 cases,
30
controls | uvntr | | | X | | Yes | | | | Tassone et al., 2011 ⁸³ | NA | Case
Control | 189 cases,
167
controls | uvntr | X | X | | | Yes | | | NF1 | Marui et al.,
2004 ⁸⁴ | Japanese | Case
Control | 74 cases,
122
controls | GxAlu -8 vs non-8
and 9 vs non-9 | | | | X | Yes | | | | Mbarek et al., 1999 ⁸⁵ | NA | Case
Control | 85 cases,
90
controls | GxAlu -8 vs non-8
and 9 vs non-9 | | | | X | Yes | | | | Plank et al., 2001 ⁸⁶ | Caucasian & African | Case
Control | 204 cases,
200
controls | GxAlu -8 vs non-8
and 9 vs non-9 | | | | X | Yes | | | MET | Campbell et al., 2006 ⁸⁷ | Italian | Family
based and
Case
Control | 702 cases,
189
controls | rs1858830 | | | | X | Yes | Only Case Control data used | | | Jackson et al., 2009 ⁸⁸ | South
Carolina
& Italian | Case
Control | 174 cases,
369
controls
(South
Carolina),
65 cases,
126
controls
(Italian) | rs1858830 | X | X | X | | Yes | | |------|--------------------------------------|--------------------------------|-----------------|--|--------------------|---|---|---|---|-----|--| | | Sousa et al., 2009 ⁸⁹ | Caucasian
& Italian | TDT | 1621
caucasian,
84 italian
trios | rs1858830, rs38845 | | | | X | Yes | | | | Campbell et al., 2008 ⁹⁰ | Mixed,
largely
Caucasian | Case
Control | 629 cases,
312
controls | rs1858830 | | | | X | Yes | | | | Thanseem et al., 2010 ⁹¹ | Japanese | Family based | 378 families | rs1858830, rs38845 | | X | | X | Yes | | | | Zhou et al., 2011 ⁹² | Chinese | Case
Control | 405 cases,
594
controls | rs1858830, rs38845 | | | X | X | Yes | | | GLO1 | Wu et al.,
2008 ⁹³ | Chinese | Case
Control | 272 cases,
310
controls | rs2736654 | | X | | X | Yes | | | | Junaid et al.,
2004 ⁹⁴ | Multi | Case
Control | 71 cases,
49
controls | rs2736654 | | X | | | Yes | | | | Kovač et al.,
2014 ⁹⁵ | Slovenian | Case
Control | 143 cases,
150
controls | rs2736654 | | | | X | Yes | | | | Sacco et al.,
2007 ⁹⁶ | Italian,
Caucasian
-American | Case
Control | 371 cases,
171
controls | rs2736654 | X | X | X | Yes | 3 | |------|--|------------------------------------|-----------------|-------------------------------|--|---|---|---|-----|---| | OXTR | Liu et al.,
2010 ⁹⁷ | Japanese | Case
Control | 282 cases,
440
controls | rs2301261,
rs2254298,
rs2268495,
rs2268491,
rs237885,
rs237887, rs53576,
rs1042778,
rs2268493 | | | X | Yes | S | | | Jacob et al., 2007 ⁹⁸ | Caucasian | Family based | 57 trios | rs2254298,rs53576 | X | X | X | Yes | 3 | | | Tansey et al., 2010 ⁹⁹ |
Caucasian | Family
based | 458 families | rs2268494,
rs237894,
rs2268495,
rs2268490,
rs2268491,
rs237885,
rs237887,
rs1042778 | | | X | NA | | | | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs2301261,
rs2254298,
rs237894,
rs2268490,
rs237885, rs53576,
rs2268493 | | | X | Yes | S | | | Nyffeler et al., 2014 ³⁹ | Caucasian | Case
Control | 76 cases
99
controls | rs2268494,
rs2301261,
rs2254298, rs53576 | X | X | | Yes | 3 | | | DiNapoli et al., 2014 ¹⁰⁰ | Caucasian | Case
Control | 118 cases,
412
controls | rs2301261,
rs2254298,
rs237894,
rs2268490,
rs237885, rs53576,
rs2268493 | | | | X | Yes | | |-----------|--|---------------------------|-----------------|-------------------------------|--|---|---|---|---|-----|--| | OMG | Vourc'h P et al., 2003 ¹⁰¹ | Caucasian | Case
Control | 65 cases,
101
controls | rs11080149 | | | | X | Yes | | | | Martin et al., 2007 ¹⁰² | US,
Canada,
Italian | Family based | 431 families | rs11080149 | | X | X | X | Yes | | | HOXA
1 | Chakrabarti et al., 2009 ¹⁷ | Caucasian | Case
Control | 174 cases,
349
controls | rs10951154 | | | | X | Yes | | | | Devlin et al., 2002 ¹⁰³ | Mixed | Family based | 231 families | rs10951154 | X | | X | X | NA | | | Collins et 2003 ¹⁰⁴ | al., Mixed | Case
Controls
and
Family
based | 204 cases,
159
controls in
total; 187
families | rs10951154 | | | | X | Yes
(Caucasi
an), No
(African
America
n) | We used Case Control for the caucasia n populati on and Family based for the African- american populati on | |-----------------------------------|--|--|--|------------|---|---|---|---|---|--| | Conciator al., 2004 ¹⁶ | | Case
Control
and
Family
based | 127 cases,
174
controls | rs10951154 | | | | X | No | Only
Family
based
data
used | | Sen et al., 2007 ¹⁰⁶ | Indian
(Northern
and
Eastern) | Case
Control | 80 cases,
149
controls | rs10951154 | | | X | X | Yes | | | Gallagher al., 2004 ¹⁰ | et Irish | Family based | 78 families | rs10951154 | X | X | | | NA | | | | Romano et al., 2003 ¹⁰⁸ | Italian | Family
based and
Case
Control | 85 cases,
132
controls | rs10951154 | | | | X | Yes | Only
Case
Control
data
used | |------------|---|--|--|------------------------------|--------------------------------------|---|---|---|---|-----|---| | | Talebizadeh et al., 2002 ¹⁰⁹ | Mixed | Case
Control | 35 cases,
35
controls | rs10951154 | | | X | X | Yes | | | | Li et al.,
2002 ¹¹⁰ | NA | Family based | 110
multiplex | rs10951154 | X | X | | | Yes | | | | Ingram et al.,2000 111 | Caucasian | Family based and Case Control | 50 families | rs10951154 | | | | X | NA | | | SLC6A
4 | Ramoz et al., 2006 ¹¹² | AGRE | Family based | 352 families | 5-HTTLPR,
rs2020936,
rs2020942 | | X | | | NA | | | | Devlin et et al., 2005 ¹¹³ | NIH | Family based | 390 families | 5-HTTLPR,
rs2020936 | | X | | X | Yes | | | | Kim et al.,
2002 ¹¹⁴ | Caucasian | Family based | 115 trios | 5-HTTLPR, VNTR | X | X | | X | Yes | | | | Cho et al.,
2007 ³⁷ | Korean | Family based | 126 trios | 5-HTTLPR | | | | X | Yes | | | | Klauck et al., 1997 ¹¹⁵ | Caucasian
(One
family:
Asian) | Family based | 65 trios | 5-HTTLPR, VNTR | X | X | | X | NA | | | | Cook et al.,
1997 ¹¹⁶ | Caucasian,
African-
American,
Hispanic- | Family based | 86
families | 5-HTTLPR, VNTR | X | X | | | NA | | | | American,
Asian-
American | | | | | | | | | | | |--|---|-----------------|------------------------------|-------------------------|---|---|---|---|---|-----|--| | Conroy et al., 2004 ¹¹⁷ | Irish | Family based | 84 trios | 5-HTTLPR, VNTR | X | X | | | | Yes | | | Maestrini et al., 1999 ¹¹⁸ | Caucasian | Family based | 90
families | 5-HTTLPR, VNTR | X | | | | | NA | | | Persico et al., 2000 ¹¹⁹ | Italian/Am
erican | Family based | 54 trios,
44 trios | 5-HTTLPR | | | | X | | Yes | | | Tordjman et al., 2001 ¹²⁰ | Caucasian | Family based | 71 trios | 5-HTTLPR | | | | | | NA | | | Yirmiya et al., 2001 ²⁶ | Isreal | Family based | 34 families | 5-HTTLPR | | X | | X | X | NA | | | Betancur et al., 2002 ¹²¹ | Caucasian (Austria, Belgium, France, Italy, Norway, Sweden and United states) | Family
based | families
with 43
trios | 5-HTTLPR, VNTR | | X | | X | | NA | | | Coutinho et al., 2006 ⁴⁶ | Portugese | Family based | 196 families | 5-HTTLPR, VNTR | | X | X | X | | NA | | | Mulder et al., 2005 ¹²² | Dutch | Family based | 125 trios | 5-HTTLPR, VNTR | | | | | | NA | | | Koishi et al., 2006 ¹²³ | Japanese | Family based | 104 trios | 5-HTTLPR | | | | X | | Yes | | | Guhathakurta et al., 2006 ¹²⁴ | Indian | Family based | 93
families | 5-HTTLPR | | | X | X | | Yes | | | Wu et al.,
2005 ¹²⁵ | Chinese | Family based | 175 trios | rs2020936,
rs2020942 | | X | | X | | Yes | | | Yoo et al., | Korean | Family | 151 trios | rs2020936, | | | | Yes | | |--------------|--------|--------|-----------|------------|--|--|--|-----|--| | 2009^{126} | | based | | rs2020942 | | | | | | **Table 2: Studies excluded** | Study | Reason for exclusion | Article name | |---------------------------------------|---|--| | Alarcon et al. 2008 ¹²⁷ | Sample overlaps with Sampath <i>et al.</i> 2013 | Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. | | Anderson et al. 2008 ¹²⁸ | Insufficient data | Examination of association to autism of common genetic variation in genes related to dopamine. | | Cheng et al. 2009 ¹²⁹ | Article inaccessible | Polyacrylamide gel-based microarray: a novel method applied to the association Study between the polymorphisms of BDNF gene and autism. | | Egawa et al. 2012 ¹³⁰ | Minor allele frequency is 0 | A detailed association analysis between the tryptophan hydroxylase 2 (TPH2) gene and autism spectrum disorders in a Japanese population. | | Gaita et al. 2010 ¹³¹ | Sample overlaps with D'amelio 2005 | Decreased serum arylesterase activity in autism spectrum disorders | | Hutcheson et al., 2004 ¹³² | Insufficient data | Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes | | Kelemenova et al. 2010 | Insufficient data | Polymorphisms of candidate genes in Slovak autistic patients. | | Mei et al. 2007 ¹³⁴ | Covariates used in analysis | Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables. | | Petit et al. 1995 ¹³⁵ | Insufficient data | Association study with two markers of a human homeogene in infantile autism. | | Rabionet et al. 2006 ¹³⁶ | Insufficient data | Lack of association between autism and SLC25A12. | | Rehnstrom et al. 2007 ¹³⁷ | Insufficient data | No association between common variants in glyoxalase 1 and autism spectrum disorders | | Serajee et al. 2004 ¹³⁸ | Sample overlaps with D'amelio 2005 | Polymorphisms in xeniobiotic metabolism genes and autism | | | Sample overlaps with | | |--------------------------------------|------------------------|--| | | Toma 2007, Melke | | | | 2008 and Wang 2013. | | | | Further tests | | | | specifically | | | | individuals with sleep | Genetic Variation in Melatonin Pathway Enzymes in Children with Autism Spectrum | | Veatch et al. 2014 ¹³⁹ | issues. | Disorder and Comorbid Sleep Onset Delay | | Weiss et al. 2006 ¹⁴⁰ | Tests for interaction | ITGB3 shows genetic and expression interaction with SLC6A4. | | Xu et al. 2013 ¹⁴¹ | Article inaccessible | Genetic polymorphisms of SNP loci in the 5' and 3' region of TPH2 gene in Northern | | | | Chinese Han population | | McCauley et al., 2003 ¹⁴² | Sample overlaps with | Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid- | | | Ramoz et al., 2006 | compulsive subset of autism | | | Article inaccessible | | | Yu et al. 2004 | and not traceable | Association study between HOXA1 A218G polymorphism and autism. | | | Sample overlaps with | A common genetic variant in the neurexin superfamily member CNTNAP2 increases | | Arking et al., 2008 ¹⁴³ | Sampath et al. 2013 | familial risk of autism. | Studies mentioned in the table are studies that otherwise satisfy the inclusion criteria as mentioned in the Methods section. Several other studies were excluded as they did not meet all the criteria mentioned in the Methods section. These studies have not been listed in the table above. ## References - Park J, Ro M, Pyun J-A, Nam M, Bang HJ, Yang JW et al. MTHFR 1298A>C is a risk factor for autism spectrum disorder in the Korean population. Psychiatry Res 2014; 215: 258–9. - Liu X, Solehdin F, Cohen IL, Gonzalez MG, Jenkins EC, Lewis MES et al. Population- and family-based studies associate the MTHFR gene with idiopathic autism in simplex families. J Autism Dev Disord 2011; 41: 938–44. - Guo T, Chen H, Liu B, Ji W, Yang C. Methylenetetrahydrofolate reductase polymorphisms
C677T and risk of autism in the Chinese Han population. Genet Test Mol Biomarkers 2012; 16: 968–73. - Dos Santos PAC, Longo D, Brandalize APC, Schüler-Faccini L. MTHFR C677T is not a risk factor for autism spectrum disorders in South Brazil. Psychiatr Genet 2010; 20: 187–9. - James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 947–56. - Paşca SP, Dronca E, Kaucsár T, Craciun EC, Endreffy E, Ferencz BK et al. One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J Cell Mol Med 2009; 13: 4229–38. - Mohammad NS, Jain JMN, Chintakindi KP, Singh RP, Naik U, Akella RRD. Aberrations in folate metabolic pathway and altered susceptibility to autism. Psychiatr Genet 2009; 19: 171–6. - Divyakolu S, Tejaswini Y, Thomas W, Thumoju S, Sreekanth VR, Vasavi M et al. Evaluation of C677T Polymorphism of the Methylenetetrahydrofolate Reductase (MTHFR) Gene in various Neurological Disorders. J Neurol Disord 2013; 2:142 - 9 Boris M, Goldblatt A, Galanko J, James J. Association of MTHFR Gene Variants with Autism. J. Am. Physicians Surg. 2004; : 106 108. - Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology 2011; 22: 476–85. - Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 2004; 9: 474–84. - Yang P, Shu B-C, Hallmayer JF, Lung F-W. Intronic single nucleotide polymorphisms of engrailed homeobox 2 modulate the disease vulnerability of autism in a han chinese population. Neuropsychobiology 2010; 62: 104–15. - Sen B, Singh AS, Sinha S, Chatterjee A, Ahmed S, Ghosh S et al. Family-based studies indicate association of Engrailed 2 gene with autism in an Indian population. Genes Brain Behav 2010; 9: 248–55. - Wang L, Jia M, Yue W, Tang F, Qu M, Ruan Y et al. Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 434–8. - Prandini P, Pasquali A, Malerba G, Marostica A, Zusi C, Xumerle L et al. The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families. Psychiatr Genet 2012; 22: 177–81. - Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 2005; 77: 851–68. - 17 Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C et al. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res 2009; 2: 157–77. - 218 Zhong H, Serajee FJ, Nabi R, Huq AHMM. No association between the EN2 gene and autistic disorder. J Med Genet 2003; 40: e4. - Jamain S, Betancur C, Quach H, Philippe A, Fellous M, Giros B et al. Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 2002; 7: 302–10. - Dutta S, Das S, Guhathakurta S, Sen B, Sinha S, Chatterjee A et al. Glutamate receptor 6 gene (GluR6 or GRIK2) polymorphisms in the Indian population: a genetic association study on autism spectrum disorder. Cell Mol Neurobiol 2007; 27: 1035–47. - Shuang M, Liu J, Jia MX, Yang JZ, Wu SP, Gong XH et al. Family-based association study between autism and glutamate receptor 6 gene in Chinese Han trios. Am J Med Genet B Neuropsychiatr Genet 2004; 131B: 48–50. - 22 Kim SA, Kim JH, Park M, Cho IH, Yoo HJ. Family-based association study between GRIK2 polymorphisms and autism spectrum disorders in the Korean trios. Neurosci Res 2007; 58: 332–5. - Limprasert P, Maisrikhaw W, Sripo T, Wirojanan J, Hansakunachai T, Roongpraiwan R et al. No association of Val158Met variant in the COMT gene with autism spectrum disorder in Thai children. Psychiatr Genet 2014; 24: 230–1. - Guo T, Wang W, Liu B, Chen H, Yang C. Catechol-O-methyltransferase Val158Met polymorphism and risk of autism spectrum disorders. J Int Med Res 2013; 41: 725–34. - Karam RA, Rezk NA, Abdelrahman HM, Hassan TH, Mohammad D, Hashim HM et al. Catechol-O-methyltransferase Val158Met polymorphism and hyperactivity symptoms in Egyptian children with autism spectrum disorder. Res Dev Disabil 2013; 34: 2092–7. - Yirmiya N, Pilowsky T, Nemanov L, Arbelle S, Feinsilver T, Fried I et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet 2001; 105: 381–6. - Coon H, Dunn D, Lainhart J, Miller J, Hamil C, Battaglia A et al. Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet 2005; 135B: 42–6. - Ramoz N, Cai G, Reichert JG, Corwin TE, Kryzak LA, Smith CJ et al. Family-based association study of TPH1 and TPH2 polymorphisms in autism. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 861–7. - Singh AS, Chandra R, Guhathakurta S, Sinha S, Chatterjee A, Ahmed S et al. Genetic association and gene-gene interaction analyses suggest likely involvement of ITGB3 and TPH2 with autism spectrum disorder (ASD) in the Indian population. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 131–43. - Curran S, Bolton P, Rozsnyai K, Chiocchetti A, Klauck SM, Duketis E et al. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 633–9. - Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 2010; 19: 4072–82. - De Krom M, Staal WG, Ophoff RA, Hendriks J, Buitelaar J, Franke B et al. A common variant in DRD3 receptor is associated with autism spectrum disorder. Biol Psychiatry 2009; 65: 625–30. - Toma C, Hervás A, Balmaña N, Salgado M, Maristany M, Vilella E et al. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World J Biol Psychiatry 2013; 14: 516–27. - Veenstra-VanderWeele J, Kim S-J, Lord C, Courchesne R, Akshoomoff N, Leventhal BL et al. Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism. Am J Med Genet 2002; 114: 277–83. - Guhathakurta S, Singh AS, Sinha S, Chatterjee A, Ahmed S, Ghosh S et al. Analysis of serotonin receptor 2A gene (HTR2A): association study with autism spectrum disorder in the Indian population and investigation of the gene expression in peripheral blood leukocytes. Neurochem Int 2009; 55: 754–9. - Hranilovic D, Blazevic S, Babic M, Smurinic M, Bujas-Petkovic Z, Jernej B. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder. Psychiatry Res 2010; 178: 556–8. - Cho IH, Yoo HJ, Park M, Lee YS, Kim SA. Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Res 2007; 1139: 34–41. - Smith RM, Banks W, Hansen E, Sadee W, Herman GE. Family-based clinical associations and functional characterization of the serotonin 2A receptor gene (HTR2A) in autism spectrum disorder. Autism Res 2014; 7: 459–67. - Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grünblatt E. Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J Mol Psychiatry 2014; 2: 1. - Durdiaková J, Warrier V, Banerjee-Basu S, Baron-Cohen S, Chakrabarti B. STX1A and Asperger syndrome: a replication study. Mol Autism 2014; 5: 14. - Nakamura K, Iwata Y, Anitha A, Miyachi T, Toyota T, Yamada S et al. Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 454–8. - Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E et al. Genetic and expression analyses reveal elevated expression of syntaxin 1A (STX1A) in high functioning autism. Int J Neuropsychopharmacol 2008; 11: 1073–84. - Cheng L, Ge Q, Xiao P, Sun B, Ke X, Bai Y et al. Association study between BDNF gene polymorphisms and autism by three-dimensional gel-based microarray. Int J Mol Sci 2009; 10: 2487–500. - Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y et al. Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Commun 2007; 356: 200–6. - Cochrane LE, Tansey KE, Gill M, Gallagher L, Anney RJL. Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Res 2010; 3: 342–4. - Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C et al. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet 2007; 121: 243–56. - Sampath S, Bhat S, Gupta S, O'Connor A, West AB, Arking DE et al. Defining the contribution of CNTNAP2 to autism susceptibility. PLoS One 2013; 8: e77906. - Toma C, Hervás A, Torrico B, Balmaña N, Salgado M, Maristany M et al. Analysis of two language-related genes in autism: a case-control association study of FOXP2 and CNTNAP2. Psychiatr Genet 2013; 23: 82–5. - 49 Li X, Hu Z, He Y, Xiong Z, Long Z, Peng Y et al. Association analysis of CNTNAP2 polymorphisms with autism in the Chinese Han population. Psychiatr Genet 2010; 20: 113–7. - 50 Sharma JR, Arieff Z, Gameeldien H, Davids M, Kaur M, van der Merwe L. Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population. Genet Test Mol Biomarkers 2013; 17: 93–8. - Fu X, Mei Z, Sun L. Association between the g.296596G > A genetic variant of RELN gene and susceptibility to autism in a
Chinese Han population. Genet Mol Biol 2013; 36: 486–9. - He Y, Xun G, Xia K, Hu Z, Lv L, Deng Z et al. No significant association between RELN polymorphism and autism in case-control and family-based association study in Chinese Han population. Psychiatry Res 2011; 187: 462–4. - Dutta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Usha R. Genetic analysis of reelin gene (RELN) SNPs: no association with autism spectrum disorder in the Indian population. Neurosci Lett 2008; 441: 56–60. - Li H, Li Y, Shao J, Li R, Qin Y, Xie C et al. The association analysis of RELN and GRM8 genes with autistic spectrum disorder in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 194–200. - Bonora E, Beyer KS, Lamb JA, Parr JR, Klauck SM, Benner A et al. Analysis of reelin as a candidate gene for autism. Mol Psychiatry 2003; 8: 885–92. - Serajee FJ, Zhong H, Mahbubul Huq AHM. Association of Reelin gene polymorphisms with autism. Genomics 2006; 87: 75–83. - Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–9. - Krebs MO, Betancur C, Leroy S, Bourdel MC, Gillberg C, Leboyer M. Absence of association between a polymorphic GGC repeat in the 5' untranslated region of the reelin gene and autism. Mol Psychiatry 2002; 7: 801–4. - Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry 2002; 7: 1012–7. - 60 Li J, Nguyen L, Gleason C, Lotspeich L, Spiker D, Risch N et al. Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am J Med Genet B Neuropsychiatr Genet 2004; 126B: 51–7. - Dutta S, Guhathakurta S, Sinha S, Chatterjee A, Ahmed S, Ghosh S et al. Reelin gene polymorphisms in the Indian population: a possible paternal 5'UTR-CGG-repeat-allele effect on autism. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 106–12. - Ramoz N. Linkage and Association of the Mitochondrial Aspartate/Glutamate Carrier SLC25A12 Gene With Autism. Am J Psychiatry 2004; 161: 662–669. - Segurado R, Conroy J, Meally E, Fitzgerald M, Gill M, Gallagher L. Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 2005; 162: 2182–4. - Blasi F, Bacchelli E, Carone S, Toma C, Monaco AP, Bailey AJ et al. SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample. Eur J Hum Genet 2006; 14: 123–6. - 65 Chien W-H, Wu Y-Y, Gau SS-F, Huang Y-S, Soong W-T, Chiu Y-N et al. Association study of the SLC25A12 gene and autism in Han Chinese in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 189–92. - 66 Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T et al. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord 2006; 36: 1137–40. - Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 2010; 15: 38–52. - Ramoz N, Cai G, Reichert JG, Silverman JM, Buxbaum JD. An analysis of candidate autism loci on chromosome 2q24-q33: evidence for association to the STK39 gene. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1152–8. - Durdiaková J, Warrier V, Baron-Cohen S, Chakrabarti B. Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism 2014; 5: 25. - Paşca SP, Dronca E, Nemeş B, Kaucsár T, Endreffy E, Iftene F et al. Paraoxonase 1 activities and polymorphisms in autism spectrum disorders. J Cell Mol Med 2010; 14: 600–7. - D'Amelio M, Ricci I, Sacco R, Liu X, D'Agruma L, Muscarella LA et al. Paraoxonase gene variants are associated with autism in North America, but not in Italy: possible regional specificity in gene-environment interactions. Mol Psychiatry 2005; 10: 1006–16. - Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsäter H et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 2008; 13: 90–8. - Toma C, Rossi M, Sousa I, Blasi F, Bacchelli E, Alen R et al. Is ASMT a susceptibility gene for autism spectrum disorders? A replication study in European populations. Mol Psychiatry 2007; 12: 977–9. - Wang L, Li J, Ruan Y, Lu T, Liu C, Jia M et al. Sequencing ASMT identifies rare mutations in Chinese Han patients with autism. PLoS One 2013; 8: e53727. - Hettinger JA, Liu X, Holden JJA. The G22A polymorphism of the ADA gene and susceptibility to autism spectrum disorders. J Autism Dev Disord 2008; 38: 14–9. - Bottini N, De Luca D, Saccucci P, Fiumara A, Elia M, Porfirio MC et al. Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001; 3: 111–3. - Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Trillo S et al. Adenosine deaminase alleles and autistic disorder: case-control and family-based association studies. Am J Med Genet 2000; 96: 784–90. - Sykes NH, Toma C, Wilson N, Volpi E V, Sousa I, Pagnamenta AT et al. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. Eur J Hum Genet 2009; 17: 1347–53. - Shao S, Xu S, Yang J, Zhang T, He Z, Sun Z et al. A commonly carried genetic variant, rs9616915, in SHANK3 gene is associated with a reduced risk of autism spectrum disorder: replication in a Chinese population. Mol Biol Rep 2014; 41: 1591–5. - Waga C, Okamoto N, Ondo Y, Fukumura-Kato R, Goto Y-I, Kohsaka S et al. Novel variants of the SHANK3 gene in Japanese autistic patients with severe delayed speech development. Psychiatr Genet 2011; 21: 208–11. - Verma D, Chakraborti B, Karmakar A, Bandyopadhyay T, Singh AS, Sinha S et al. Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50: 11–20. - Salem AM, Ismail S, Zarouk WA, Abdul Baky O, Sayed AA, Abd El-Hamid S et al. Genetic variants of neurotransmitter-related genes and miRNAs in Egyptian autistic patients. ScientificWorldJournal 2013; 2013: 670621. - Tassone F, Qi L, Zhang W, Hansen RL, Pessah IN, Hertz-Picciotto I. MAOA, DBH, and SLC6A4 variants in CHARGE: a case-control study of autism spectrum disorders. Autism Res 2011; 4: 250–61. - Marui T, Hashimoto O, Nanba E, Kato C, Tochigi M, Umekage T et al. Association between the neurofibromatosis-1 (NF1) locus and autism in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 2004; 131B: 43–7. - Mbarek O, Marouillat S, Martineau J, Barthélémy C, Müh JP, Andres C. Association study of the NF1 gene and autistic disorder. Am J Med Genet 1999; 88: 729–32. - Plank SM, Copeland-Yates SA, Sossey-Alaoui K, Bell JM, Schroer RJ, Skinner C et al. Lack of association of the (AAAT)6 allele of the GXAlu tetranucleotide repeat in intron 27b of the NF1 gene with autism. Am J Med Genet 2001; 105: 404–5. - Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A 2006; 103: 16834–9. - Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res 2009; 2: 232–6. - Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R et al. MET and autism susceptibility: family and case-control studies. Eur J Hum Genet 2009; 17: 749–58. - Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res 2008; 1: 159–68. - Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res 2010; 68: 137–41. - 22 Zhou X, Xu Y, Wang J, Zhou H, Liu X, Ayub Q et al. Replication of the association of a MET variant with autism in a Chinese Han population. PLoS One 2011; 6: e27428. - Wu Y-Y, Chien W-H, Huang Y-S, Gau SS-F, Chen C-H. Lack of evidence to support the glyoxalase 1 gene (GLO1) as a risk gene of autism in Han Chinese patients from Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1740–4. - Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S, Pullarkat RK. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 2004; 131: 11–7. - Kovač J, Podkrajšek KT, Lukšič MM, Battelino T. Weak association of glyoxalase 1 (GLO1) variants with autism spectrum disorder. Eur Child Adolesc Psychiatry 2014. doi:10.1007/s00787-014-0537-8. - Sacco R, Papaleo V, Hager J, Rousseau F, Moessner R, Militerni R et al. Case-control and family-based association studies of candidate genes in autistic disorder and its endophenotypes: TPH2 and GLO1. BMC Med Genet 2007; 8: 11. - Liu X, Kawamura Y, Shimada T, Otowa T, Koishi S, Sugiyama T et al. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 2010; 55: 137–41. - Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 2007; 417: 6–9. - Tansey KE, Brookes KJ, Hill MJ, Cochrane LE, Gill M, Skuse D et al. Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: genetic and molecular studies. Neurosci Lett 2010; 474: 163–7. - Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with
Asperger Syndrome. Mol Autism 2014; 5: 48. - Vourc'h P, Martin I, Marouillat S, Adrien JL, Barthélémy C, Moraine C et al. Molecular analysis of the oligodendrocyte myelin glycoprotein gene in autistic disorder. Neurosci Lett 2003; 338: 115–8. - Martin I, Gauthier J, D'Amelio M, Védrine S, Vourc'h P, Rouleau GA et al. Transmission disequilibrium study of an oligodendrocyte and myelin glycoprotein gene allele in 431 families with an autistic proband. Neurosci Res 2007; 59: 426–30. - Devlin B, Bennett P, Cook EH, Dawson G, Gonen D, Grigorenko EL et al. No evidence for linkage of liability to autism to HOXA1 in a sample from the CPEA network. Am J Med Genet 2002; 114: 667–72. - 104 Collins JS, Schroer RJ, Bird J, Michaelis RC. The HOXA1 A218G Polymorphism and Autism: Lack of Association in White and Black Patients from the South Carolina Autism Project. J Autism Dev Disord 2003; 33: 343–348. - 105 Conciatori M, Stodgell CJ, Hyman SL, O'Bara M, Militerni R, Bravaccio C et al. Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry 2004; 55: 413–9. - Sen B, Sinha S, Ahmed S, Ghosh S, Gangopadhyay PK, Usha R. Lack of association of HOXA1 and HOXB1 variants with autism in the Indian population. Psychiatr Genet 2007; 17: 1. - Gallagher L, Hawi Z, Kearney G, Fitzgerald M, Gill M. No association between allelic variants of HOXA1/HOXB1 and autism. Am J Med Genet B Neuropsychiatr Genet 2004; 124B: 64–7. - Romano V, Calì F, Mirisola M, Gambino G, D' Anna R, Di Rosa P et al. Lack of association of HOXA1 and HOXB1 mutations and autism in Sicilian (Italian) patients. Mol Psychiatry 2003; 8: 716–7. - Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N et al. No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet 2002; 39: e70. - Li J, Tabor HK, Nguyen L, Gleason C, Lotspeich LJ, Spiker D et al. Lack of association between HoxA1 and HoxB1 gene variants and autism in 110 multiplex families. Am J Med Genet 2002; 114: 24–30. - Ingram JL, Stodgell CJ, Hyman SL, Figlewicz DA, Weitkamp LR, Rodier PM. Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 2000; 62: 393–405. - 112 Ramoz N, Reichert JG, Corwin TE, Smith CJ, Silverman JM, Hollander E et al. Lack of evidence for association of the serotonin transporter gene SLC6A4 with autism. Biol Psychiatry 2006; 60: 186–91. - Devlin B, Cook EH, Coon H, Dawson G, Grigorenko EL, McMahon W et al. Autism and the serotonin transporter: the long and short of it. Mol Psychiatry 2005; 10: 1110–6. - 114 Kim S-J, Cox N, Courchesne R, Lord C, Corsello C, Akshoomoff N et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 2002; 7: 278–88. - 115 Klauck SM, Poustka F, Benner A, Lesch KP, Poustka A. Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet 1997; 6: 2233–8. - 116 Cook EH, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997; 2: 247–50. - 117 Conroy J, Meally E, Kearney G, Fitzgerald M, Gill M, Gallagher L. Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004; 9: 587–93. - 118 Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A et al. Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet 1999; 88: 492–6. - Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Conciatori M et al. Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. Am J Med Genet 2000; 96: 123–7. - Tordjman S, Gutknecht L, Carlier M, Spitz E, Antoine C, Slama F et al. Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 2001; 6: 434–9. - Betancur C, Corbex M, Spielewoy C, Philippe A, Laplanche JL, Launay JM et al. Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol Psychiatry 2002; 7: 67–71. - Mulder EJ, Anderson GM, Kema IP, Brugman AM, Ketelaars CEJ, de Bildt A et al. Serotonin transporter intron 2 polymorphism associated with rigid-compulsive behaviors in Dutch individuals with pervasive developmental disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 93–6. - Koishi S, Yamamoto K, Matsumoto H, Koishi S, Enseki Y, Oya A et al. Serotonin transporter gene promoter polymorphism and autism: a family-based genetic association study in Japanese population. Brain Dev 2006; 28: 257–60. - Guhathakurta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Gangopadhyay PK et al. Population-based association study and contrasting linkage disequilibrium pattern reveal genetic association of SLC6A4 with autism in the Indian population from West Bengal. Brain Res 2008; 1240: 12–21. - Wu S, Guo Y, Jia M, Ruan Y, Shuang M, Liu J et al. Lack of evidence for association between the serotonin transporter gene (SLC6A4) polymorphisms and autism in the Chinese trios. Neurosci Lett 2005; 381: 1–5. - Yoo HJ, Cho IH, Park M, Yang SY, Kim SA. No Association Study of SLC6A4 Polymorphisms with Korean Autism Spectrum Disorder. Korean J Biol Psychiatry 2009; 16: 121–126. - Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy J V, Bomar JM et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008; 82: 150–9. - Anderson BM, Schnetz-Boutaud N, Bartlett J, Wright HH, Abramson RK, Cuccaro ML et al. Examination of association to autism of common genetic variationin genes related to dopamine. Autism Res 2008; 1: 364–9. - 129 Cheng L, Ge Q, Sun B, Yu P, Ke X, Lu Z. Polyacrylamide gel-based microarray: a novel method applied to the association Study between the polymorphisms of BDNF gene and autism. J Biomed Nanotechnol 2009; 5: 542–50. - Egawa J, Watanabe Y, Nunokawa A, Endo T, Kaneko N, Tamura R et al. A detailed association analysis between the tryptophan hydroxylase 2 (TPH2) gene and autism spectrum disorders in a Japanese population. Psychiatry Res 2012; 196: 320–2. - Gaita L, Manzi B, Sacco R, Lintas C, Altieri L, Lombardi F et al. Decreased serum arylesterase activity in autism spectrum disorders. Psychiatry Res 2010; 180: 105–13. - Hutcheson HB, Olson LM, Bradford Y, Folstein SE, Santangelo SL, Sutcliffe JS et al. Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes. BMC Med Genet 2004; 5: 12. - Kelemenova S, Schmidtova E, Ficek A, Celec P, Kubranska A, Ostatnikova D. Polymorphisms of candidate genes in Slovak autistic patients. Psychiatr Genet 2010; 20: 137–9. - Mei H, Cuccaro ML, Martin ER. Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables. Am J Hum Genet 2007; 81: 1251–61. - Petit E, Hérault J, Martineau J, Perrot A, Barthélémy C, Hameury L et al. Association study with two markers of a human homeogene in infantile autism. J Med Genet 1995; 32: 269–74. - Rabionet R, McCauley JL, Jaworski JM, Ashley-Koch AE, Martin ER, Sutcliffe JS et al. Lack of association between autism and SLC25A12. Am J Psychiatry 2006; 163: 929–31. - Rehnström K, Ylisaukko-Oja T, Vanhala R, von Wendt L, Peltonen L, Hovatta I. No association between common variants in glyoxalase 1 and autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 124–7. - Serajee FJ, Nabi R, Zhong H, Huq M. Polymorphisms in xenobiotic metabolism genes and autism. J Child Neurol 2004; 19: 413–7. - Veatch OJ, Pendergast JS, Allen MJ, Leu RM, Johnson CH, Elsea SH et al. Genetic Variation in Melatonin Pathway Enzymes in Children with Autism Spectrum Disorder and Comorbid Sleep Onset Delay. J Autism Dev Disord 2014. doi:10.1007/s10803-014-2197-4. - 140 Weiss LA, Ober C, Cook EH. ITGB3 shows genetic and expression interaction with SLC6A4. Hum Genet 2006; 120: 93–100. - 141 Xu X-M, Ding M, Pang H, Xing J-X, Xuan J-F, Wang B-J. [Genetic polymorphisms of SNP loci in the 5' and 3' region of TPH2 gene in Northern Chinese Han population]. Fa Yi Xue Za Zhi 2013; 29: 21–4. - McCauley JL, Olson LM, Dowd M, Amin T, Steele A, Blakely RD et al. Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid-compulsive subset of autism. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 104–12. - Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 2008; 82: 160–4. - 144. Ashley-Koch AE, Jaworski J, Ma de Q, Mei H, Ritchie MD, Skaar DA et al. Investigation of potential gene-gene interactions between APOE and RELN contributing to autism risk. Psychiatr Genet. 2007 Aug;17(4):221-6. ## Supplementary Figures 1-8: Forest plots of most significant SNPs Figure 1: Forest plot for rs7794745 (CNTNAP2) | Study name | Subgroup within stud | udy Statistics for each study | | | | | | Odds ratio and 95% CI | | | | | | | |-------------------|----------------------|-------------------------------|----------------|-------|---------|---------|------|-----------------------|---|-----------|-----|--|--|--| | | | Odds
ratio | Lower
limit | | Z-Value | p-Value | | | | | | | | | | Li 2010 | TDT | 0.919 | 0.677 | 1.247 | -0.545 | 0.586 | | | + | | 1 | | | | | Toma 2013 | CC | 0.756 | 0.567 | 1.006 | -1.917 | 0.055 | | | | | | | | | | Sampath 2013 NIMH | TDT | 0.841 | 0.757 | 0.935 | -3.210 | 0.001 | | | | | | | | | | Sampath 2013 SSC | TDT | 0.944 | 0.854 | 1.042 | -1.141 | 0.254 | | | | | | | | | | | | 0.887 | 0.828 | 0.950 | -3.445 | 0.001 | | | N | | | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | |
 | | | | | | | | | | Favours A | | Favours B | | | | | Figure 2: Forest plot for rs167771 (DRD3) | | | Statisti | ics for ea | ach study | <u>/</u> | - | Odds ra | itio and | <u>:I</u> | | |-------------|---------------|-------------|----------------|-----------|----------|------|---------|----------|-----------|-----| | | Odds
ratio | Lower limit | Upper
limit | Z-Value | p-Value | | | | | | | Krom 2009 A | 1.884 | 1.348 | 2.633 | 3.708 | 0.000 | | | | | | | Krom 2009 B | 2.247 | 1.372 | 3.680 | 3.218 | 0.001 | | | | - | | | Toma 2013 | 0.700 | 0.282 | 1.734 | -0.771 | 0.441 | | - | | | | | | 1.822 | 1.398 | 2.375 | 4.438 | 0.000 | | | ♦ | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | F | avours | A F | avours | В | Figure 3: Forest plot for rs362691 (*RELN*) | Study name | | <u>Statisti</u> | cs for e | ach stud | У | Ç | Odds ra | tio ar | <u>ıd 95% C</u> I | | |---------------------|---------------|-----------------|----------------|----------|---------|------|---------|----------------|-------------------|-----| | | Odds
ratio | Lower limit | Upper
limit | Z-Value | p-Value | | | | | | | Sharma 2013 (Black) | 1.060 | 0.372 | 3.023 | 0.109 | 0.913 | | | | – l | | | Sharma 2013 (White) | 0.590 | 0.220 | 1.581 | -1.049 | 0.294 | | - | - + | | | | Sharma 2013 (Mixed) | 0.740 | 0.311 | 1.758 | -0.682 | 0.495 | | - | | | | | He 2011 | 1.405 | 0.793 | 2.490 | 1.164 | 0.244 | | | +- | - | | | Outta 2008 | 0.810 | 0.432 | 1.518 | -0.658 | 0.511 | | | - | | | | i 2008 | 0.850 | 0.773 | 0.934 | -3.374 | 0.001 | | | | | | | Bonora 2003 | 0.800 | 0.413 | 1.550 | -0.661 | 0.509 | | | | | | | Serajee 2006 | 0.520 | 0.360 | 0.751 | -3.492 | 0.000 | | - | | | | | | 0.832 | 0.763 | 0.908 | -4.112 | 0.000 | | | ♦ | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | Fa | vours A | 4 | Favours | В | Figure 4: Forest plot for rs2268491 (OXTR) | Study name | | Statist | ics for e | ach study | <u>'</u> | | Odds ra | tio and | d 95%CI | | |--------------------------------|---------------|----------------|----------------|-----------|----------|------|-----------|---------|-----------|-----| | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | Liu et al., 2010 | 1.405 | 1.112 | 1.775 | 2.850 | 0.004 | | | | | | | Tansey et al., 2010 Irish | 1.410 | 0.860 | 2.311 | 1.363 | 0.173 | | | + | | | | Tansey et al., 2010 Portuguese | 1.020 | 0.678 | 1.535 | 0.095 | 0.924 | | | + | | | | Tansey et al., 2010 UCL | 1.250 | 0.588 | 2.659 | 0.579 | 0.562 | | | + | - | | | | 1.310 | 1.092 | 1.572 | 2.906 | 0.004 | | | • | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | Favours A | | Favours B | | Figure 5: Forest plot for rs2292813 (SLC25A12) | Study name | Subgroup within study | Outcome | | Statisti | cs for e | ach study | ,
_ | | Odds | atio and 9 | 95% CI | | |---------------|-----------------------|--------------|---------------|----------------|----------------|-----------|---------|------|-----------|------------|-----------|-----| | | | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | Ramoz 2004 | Egyptian | TDT | 1.459 | 1.107 | 1.922 | 2.682 | 0.007 | | | | | | | Segurado 2005 | Irish | TDT | 1.889 | 1.067 | 3.344 | 2.182 | 0.029 | | | - | - | | | Blasi 2006 | Caucasian | TDT | 1.280 | 0.884 | 1.853 | 1.308 | 0.191 | | | #■- | | | | Chien 2010 | Chinese | Case-control | 1.293 | 0.950 | 1.758 | 1.636 | 0.102 | | | | | | | Palmieri 2010 | Italian | Case-control | 1.182 | 0.472 | 2.958 | 0.357 | 0.721 | | | - | . | | | Prandini 2012 | Italian | TDT | 0.710 | 0.213 | 2.364 | -0.558 | 0.577 | | - | ╼┼─ | | | | | | | 1.373 | 1.162 | 1.622 | 3.722 | 0.000 | | | • | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | Favours A | | Favours B | | Figure 6: Forest plot for rs2056202 (SLC25A12) | Study name | | Statisti | cs for e | ach stud | y | Odds ratio and 95% CI | |------------------|------------|-------------|----------------|----------|---------|-----------------------| | | Odds ratio | Lower limit | Upper
limit | Z-Value | p-Value | | | Ramoz 2004 | 1.394 | 1.119 | 1.736 | 2.968 | 0.003 | | | Segurado 2005 | 1.840 | 1.131 | 2.994 | 2.454 | 0.014 | | | Blasi 2006 | 1.125 | 0.832 | 1.520 | 0.767 | 0.443 | # | | Correira 2006 | 1.031 | 0.532 | 1.998 | 0.090 | 0.928 | + | | Chakrabarti 2009 | 1.112 | 0.739 | 1.672 | 0.510 | 0.610 | + | | Chien 2010 | 1.093 | 0.824 | 1.450 | 0.619 | 0.536 | • | | Palmieri 2010 | 1.361 | 0.584 | 3.170 | 0.713 | 0.476 | +- | | Durdiakova 2014 | 0.760 | 0.393 | 1.470 | -0.815 | 0.415 | -+ | | | 1.227 | 1.079 | 1.396 | 3.123 | 0.002 | | | | | | | | | 0.01 0.1 1 10 100 | | | | | | | | Favours A Favours B | Figure 7: Forest plot for rs1801133 (MTHFR) | Study name | | Statisti | cs for e | ach study | Y | | Odds ra | atio and | d 95% C | <u>:</u> | |----------------|---------------|----------------|----------------|-----------|---------|------|---------|----------|--------------|----------| | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | Boris 2004 | 2.252 | 1.811 | 2.799 | 7.307 | 0.000 | 1 | | | 1 | | | James 2006 | 1.243 | 0.962 | 1.606 | 1.666 | 0.096 | | | | | | | Mohammad 2009 | 2.790 | 1.579 | 4.928 | 3.535 | 0.000 | | | - | ⊪ - │ | | | Pasca 2009 | 1.179 | 0.553 | 2.510 | 0.426 | 0.670 | | | | | | | dos Santo 2010 | 1.150 | 0.789 | 1.676 | 0.727 | 0.467 | | | | | | | Liu 2011 | 1.148 | 0.980 | 1.343 | 1.714 | 0.086 | | | | | | | Schmidt 2011 | 0.853 | 0.649 | 1.121 | -1.140 | 0.254 | | | | | | | Guo 2012 | 1.303 | 0.961 | 1.767 | 1.703 | 0.089 | | | | | | | Divyakolu 2013 | 3.632 | 1.543 | 8.547 | 2.953 | 0.003 | | | - | ━- | | | Park 2014 | 0.966 | 0.772 | 1.208 | -0.307 | 0.759 | | | | | | | | 1.370 | 1.079 | 1.739 | 2.589 | 0.010 | | | ♦ | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | F | avours | A F | avours | В | Figure 8: Forest plot for rs1861972 (EN2) ### Supplementary Figures 9 – 15: Significant subgroup analyses Figure 9: STin2 VNTR (SLC6A4), Caucasian only | Study name | Subgroup within stud | ly | Statist | ics for e | ach stud | у | | Odds rat | tio and | <u>95% C</u> I | | |--|-------------------------|---------------|----------------|-----------|----------|---------|------|-----------|---------|----------------|-----| | | | Odds
ratio | Lower
limit | | Z-Value | p-Value | | | | | | | Cook 1997 | Caucasian | 1.650 | 0.857 | 3.177 | 1.498 | 0.134 | | | ╁══╌ | . | 1 | | Klauk 1997 | Caucasian | 1.400 | 0.725 | 2.703 | 1.003 | 0.316 | | | ▐ | | | | Maestrini 199 | laestrini 1999Caucasian | 0.910 | 0.499 | 1.660 | -0.307 | 0.759 | | | # | | | | laestrini 1999Caucasian
im 2002 Caucasian | 3.380 | 1.519 | 7.522 | 2.984 | 0.003 | | | - | - | | | | | | 1.492 | 1.068 | 2.083 | 2.347 | 0.019 | | | lack | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | Favours A | | Favours B | | Figure 10: rs362691 (RELN), Case-control only | Study name | Method | Ancestry | | Statist | ics for e | ach study | _ | | Odds | atio and | 1 95% CI | | |------------------|--------------------|----------------|---------------|----------------|-----------|-----------|---------|------|-----------|--------------|-----------|-----| | | | | Odds
ratio | Lower
limit | | Z-Value | p-Value | | | | | | | Sharma 2013 (Bla | ack) Case control | South African | 1.060 | 0.372 | 3.023 | 0.109 | 0.913 | | | + | - | | | Sharma 2013 (Wh | nite) Case control | South African | 0.590 | 0.220 | 1.581 | -1.049 | 0.294 | | - | - | | | | Sharma 2013 (Mix | xed) Case control | South African | 0.740 | 0.311 | 1.758 | -0.682 | 0.495 | | - | | | | | He 2011 | Case control | Chinese (Hans) | 1.405 | 0.793 | 2.490 | 1.164 | 0.244 | | | +- | - | | | Outta 2008 | Case control | Indian | 0.810 | 0.432 | 1.518 | -0.658 | 0.511 | | | - | | | | i 2008 | Case control | Chinese (Hans) | 0.850 | 0.773 | 0.934 | -3.374 | 0.001 | | | | | | | | | | 0.857 | 0.783 | 0.939 | -3.318 | 0.001 | | | ♦ | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | Favours A | | Favours B | | Figure 11: rs2292813 (*SLC25A12*), TDT only | Group by | Study name | Subgroup within study | Outcome | | Statisti | cs for ea | ach study | | | Od | ds ratio and 95 | 5% CI | | |----------|---------------|-----------------------|---------|---------------|----------------|----------------|-----------|---------|------|-----------|-----------------|-----------|-----| | Outcome | | | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | TDT | Ramoz 2004 | Egyptian | TDT | 1.459 | 1.107 | 1.922 | 2.682 | 0.007 | | | | | | | TDT | Segurado 2005 | Irish | TDT | 1.889 | 1.067 | 3.344 | 2.182 | 0.029 | | | | - | | | TDT | Blasi 2006 | Caucasian | TDT | 1.280 | 0.884 | 1.853 | 1.308 | 0.191 | | | +■- | | | | IDT | Prandini 2012 | Italian | TDT | 0.710 | 0.213 | 2.364 | -0.558 | 0.577 | | - | | | | | TDT | | | | 1.419 | 1.158 | 1.740 | 3.377 | 0.001 | | | • | | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | | Favours A | | Favours B | | Figure 12: rs2056202 (*SLC25A12*), TDT only | Study name | Ancestry | Method | | Statisti | cs for e | ach stud | y | | Odds ra | tio and | 95% CI | | |-----------------|------------|--------|---------------|----------------|----------|----------|---------|------|-----------|---------|-----------|-----| | | | | Odds
ratio | Lower
limit | | Z-Value | p-Value | | | | | | | Ramoz 2004 | Egyptian | TDT | 1.394 | 1.119 | 1.736 | 2.968 | 0.003 | | | | | | | Segurado 2005 | Irish | TDT | 1.840 | 1.131 | 2.994 | 2.454 | 0.014 | | | - | - | | | Blasi 2006 | Caucasiar | nTDT | 1.125 | 0.832 | 1.520 | 0.767 | 0.443 | | | # | | | | Chakrabarti 200 | 9Caucasiar | nTDT | 1.112 | 0.739 | 1.672 | 0.510 | 0.610 | | | + | | | |
Durdiakova 2014 | 4Caucasiar | nTDT | 0.760 | 0.393 | 1.470 | -0.815 | 0.415 | | - | ╼┼ | | | | | | | 1.275 | 1.097 | 1.482 | 3.173 | 0.002 | | | ♦ | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | Favours A | | Favours B | | Figure 13: rs1861973 (*EN2*), TDT only | Study name | Subgroup within study | | Statisti | cs for e | ach study | - | | Odds | ratio and | 95% CI | | |----------------------|-----------------------|---------------|----------------|----------------|-----------|--------------|------|-----------|-----------|-----------|-----| | | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | Sen 2010 | TDT | 0.568 | 0.333 | 0.970 | -2.073 | 0.038 | | - | → | 1 | | | Gharani 2004 | TDT | 0.715 | 0.550 | 0.929 | -2.507 | 0.012 | | | • | | | | Benayed 2005 AGRE II | TDT | 0.916 | 0.811 | 1.034 | -1.419 | 0.156 | | | | | | | Benayed 2005 NIMH | TDT | 0.893 | 0.741 | 1.076 | -1.189 | 0.234 | | | • | | | | | | 0.869 | 0.792 | 0.954 | -2.942 | 0.003 | | | H | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | Favours A | | Favours B | | Figure 14: rs1861973 (*EN2*), Caucasian only | Study name | Subgroup within study | <u>.</u> | Statisti | ics for e | ach study | ,
 | | Odds | ratio and 9 | 95% CI | | |----------------------|-----------------------|---------------|----------------|----------------|-----------|---------|------|-----------|-------------|-----------|-----| | | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | Gharani 2004 | Caucasian | 0.715 | 0.550 | 0.929 | -2.507 | 0.012 | | | → | - 1 | | | Benayed 2005 AGRE II | Caucasian | 0.916 | 0.811 | 1.034 | -1.419 | 0.156 | | | | | | | Benayed 2005 NIMH | Caucasian | 0.893 | 0.741 | 1.076 | -1.189 | 0.234 | | | • | | | | | | 0.881 | 0.801 | 0.969 | -2.620 | 0.009 | | | N | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | Favours A | | Favours B | | Figure 15: rs1861972 (*EN2*), TDT only | Study name | Subgroup within study | Statistics for each study | | | | | | Odds ratio and 95%CI | | | | | | |----------------------|-----------------------|---------------------------|----------------|----------------|---------|---------|------|----------------------|----------|----|-----|--|--| | | | Odds
ratio | Lower
limit | Upper
limit | Z-Value | p-Value | | | | | | | | | Benayed 2005 AGRE II | TDT | 1.082 | 0.960 | 1.220 | 1.295 | 0.195 | - 1 | 1 | | 1 | - 1 | | | | Benayed 2005 NIMH | TDT | 1.106 | 0.917 | 1.335 | 1.052 | 0.293 | | | + | | | | | | Gharani 2004 | TDT | 1.826 | 1.241 | 2.686 | 3.056 | 0.002 | | | | | | | | | Prandini 2012 | TDT | 1.136 | 0.788 | 1.639 | 0.684 | 0.494 | | | + | | | | | | | | 1.126 | 1.025 | 1.238 | 2.472 | 0.013 | | | ₩ | | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | ### Supplementary Figures 16-20: Sensitivity analyses forest plots Figure 16: Sensitivity analysis for rs4446909 (ASMT) | Study name | Ancestry | _ | Statistics | with stu | ıdy remov | ved | | Odds ratio (95%CI) | | | | | |-------------------|-----------|-------|----------------|----------------|-----------|---------|------|--------------------|--------|-----------|-----|--| | | | Point | Lower
limit | Upper
limit | Z-Value | p-Value | | with stu | ıdy re | moved | | | | Melke 2008 | Mixed | 1.120 | 0.955 | 1.314 | 1.391 | 0.164 | | | | | | | | Toma 2007 Finnish | Caucasian | 1.194 | 1.033 | 1.381 | 2.394 | 0.017 | | | | | | | | Toma 2007 Italian | Caucasian | 1.201 | 1.037 | 1.390 | 2.450 | 0.014 | | | | | | | | Toma 2007 IMGSAC | Caucasian | 1.213 | 1.038 | 1.418 | 2.430 | 0.015 | | | | | | | | Wang 2013 | Chinese | 1.272 | 1.051 | 1.539 | 2.468 | 0.014 | | | | | | | | | | 1.195 | 1.038 | 1.375 | 2.479 | 0.013 | | | ♦ | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | Favours A | | Favours E | 3 | | __ _ _ _ Figure 17: Sensitivity analysis for rs736707 (*RELN*) | Study name | Ancestry | Method | Statistics with study removed | | | | | | Odds ratio (95% | o (95% CI) with study removed | | | |---------------------|----------------|--------------|-------------------------------|-------|----------------|---------|---------|------|-----------------|-------------------------------|-----------|-----| | | | | Point | | Upper
limit | Z-Value | p-Value | | | | | | | Sharma 2013 (Black) | South African | Case control | 1.297 | 1.036 | 1.623 | 2.268 | 0.023 | | | | | | | Sharma 2013 (White) | South African | Case control | 1.266 | 1.014 | 1.580 | 2.084 | 0.037 | | | | | | | Sharma 2013 (Mixed) | South African | Case control | 1.204 | 0.978 | 1.483 | 1.749 | 0.080 | | | | | | | le 2011 | Chinese (Hans) | Case control | 1.363 | 1.140 | 1.629 | 3.402 | 0.001 | | | | | | | Outta 2008 | Indian | Case control | 1.262 | 1.002 | 1.589 | 1.979 | 0.048 | | | | | | | i 2008 | Chinese (Hans) | Case control | 1.267 | 0.956 | 1.679 | 1.644 | 0.100 | | | | | | | Serajee 2006 | Caucasian | TDT | 1.187 | 0.953 | 1.479 | 1.527 | 0.127 | | | | | | | Chakrabarti 2009 | Caucasian | Case control | 1.310 | 1.038 | 1.652 | 2.277 | 0.023 | | | | | | | Varrier 2014 | Caucasian | Case control | 1.302 | 1.034 | 1.640 | 2.248 | 0.025 | | | | | | | | | | 1.269 | 1.030 | 1.563 | 2.235 | 0.025 | | | ♦ | | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | | Favours A | | Favours B | | Figure 18: Sensitivity analysis for rs1801133 (MTHFR) | Study name | <u>S</u> | Statistics | with stu | ıdy remo | Odds ratio (95% CI) | | | | | | |----------------|----------|-------------|----------------|----------|---------------------|------|---------|----------|--------|-----| | | Point | Lower limit | Upper
limit | Z-Value | p-Value | | with st | udy rei | noved | | | Boris 2004 | 1.229 | 1.019 | 1.483 | 2.153 | 0.031 | | | | | | | James 2006 | 1.397 | 1.064 | 1.835 | 2.408 | 0.016 | | | | | | | Mohammad 2009 | 91.288 | 1.017 | 1.632 | 2.098 | 0.036 | | | | | | | Pasca 2009 | 1.385 | 1.079 | 1.777 | 2.558 | 0.011 | | | | | | | dos Santo 2010 | 1.402 | 1.081 | 1.820 | 2.543 | 0.011 | | | | | | | Liu 2011 | 1.422 | 1.064 | 1.900 | 2.382 | 0.017 | | | | | | | Schmidt 2011 | 1.455 | 1.135 | 1.865 | 2.958 | 0.003 | | | | | | | Guo 2012 | 1.386 | 1.062 | 1.809 | 2.399 | 0.016 | | | | | | | Divyakolu 2013 | 1.301 | 1.028 | 1.646 | 2.190 | 0.029 | | | | | | | Park 2014 | 1.441 | 1.110 | 1.872 | 2.741 | 0.006 | | | | | | | | 1.370 | 1.079 | 1.739 | 2.589 | 0.010 | | | ♦ | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | F | avours | A F | avours | В | Figure 19: Sensitivity analysis for rs2056202 (SLC25A12) | Study name | S | tatistics | with stu | ıdy remo | Odds ratio (95% CI) | | | | | | |------------------|-------|-------------|----------------|----------|---------------------|------|---------------|---------|--------------|-----| | | Point | Lower limit | Upper
limit | Z-Value | p-Value | | with st | udy rer | noved | | | Ramoz 2004 | 1.148 | 0.980 | 1.346 | 1.708 | 0.088 | | | | | | | Segurado 2005 | 1.191 | 1.042 | 1.360 | 2.566 | 0.010 | | | | | | | Blasi 2006 | 1.251 | 1.085 | 1.442 | 3.091 | 0.002 | | | | | | | Correira 2006 | 1.236 | 1.084 | 1.409 | 3.165 | 0.002 | | | | | | | Chakrabarti 2009 | 1.241 | 1.084 | 1.421 | 3.121 | 0.002 | | | | | | | Chien 2010 | 1.265 | 1.095 | 1.461 | 3.191 | 0.001 | | | | | | | Palmieri 2010 | 1.224 | 1.075 | 1.394 | 3.050 | 0.002 | | | | | | | Durdiakova 2014 | 1.251 | 1.097 | 1.426 | 3.345 | 0.001 | | | | | | | | 1.227 | 1.079 | 1.396 | 3.123 | 0.002 | | | ♦ | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | 0.1
avours | | 10
avours | | Figure 20: Sensitivity analysis for rs1861972 (EN2) | Study name | St | atistics | with stu | udy remo | | Odds ratio (95% CI) | | | | | | |----------------------|--|----------|----------|----------|-------|---------------------|--------------------|---|---------|-----|--| | | Lower Upper
Point limit limit Z-Value p-Value | | | | | | with study removed | | | | | | Yang 2008 | 1.147 | 0.978 | 1.344 | 1.690 | 0.091 | | | | | | | | Yang 2010 | 1.163 | 0.982 | 1.377 | 1.750 | 0.080 | | | | | | | | Benayed 2005 AGRE II | 1.242 | 0.995 | 1.550 | 1.915 | 0.055 | | | | | | | | Benayed 2005 NIMH | 1.228 | 0.993 | 1.518 | 1.898 | 0.058 | | | | | | | | Gharani 2004 | 1.112 | 0.975 | 1.268 | 1.579 | 0.114 | | | | | | | | Chakrabarti 2009 | 1.244 | 1.060 | 1.460 | 2.674 | 0.007 | | | | | | | | Warrier 2014 | 1.207 | 1.002 | 1.455 | 1.980 | 0.048 | | | | | | | | | 1.187 | 1.011 | 1.393 | 2.092 | 0.036 | | | ♦ | | | | | | | | | | | 0.01 | 0.1 | 1 | 10 | 100 | | | | | | | | | | Favours A | | Favours | В | | #### Details of data from our lab **Cohort 1:** Cohort 1 consists of 349 controls (143 males and 206 females) without an ASC diagnosis and were recruited using an advertisement. The mean AQ score for this cohort was 16.43 (range: 3–36, mean score for males: 18.01, mean score for females: 15.33). There were 174 cases (140 males and 34 females). Cases were diagnosed with AS by independent clinicians based on DSM-IV or ICD 10 criteria. The following SNPs used included in the study were genotyped an analysed previously [1]: rs37356353 and rs1861972 in *EN2*; rs6265 in *BDNF*, rs10951145 in *HOXA1*; rs237885 and rs2228485 in *OXTR*. Additionally, for this study, we genotyped the following SNPs: rs4717806 in *STX1A*; rs736707 in *RELN*, rs2056202 in SLC25A12; rs53576, rs2254298, rs2268493, rs2268490, rs237894, and rs2301261 in *OXTR*. Cohort 2: Cohort 2 consists of 118 cases and 412 controls. The controls (185 males, 227 females) had an AQ score below 24. The mean AQ score was 14.9 (range: 2-23, mean score for males: 16.0, mean score for females: 13.9). There were 118 cases (74 males, and 44 females). Cases were diagnosed with AS by independent clinicians based on DSM-IV or ICD 10 criteria. Select SNPs in three genes, namely OXTR, SLC25A12, GABRB3, and
STX1A were genotyped, analysed and reported previously [2,3,4,5]. SNPs from these genes analysed in this study have been referenced accordingly. In addition, we also genotyped rs1861972 in *EN2* and rs736707 in *RELN*. All participants reported Caucasian ancestry for atleast three generations.DNA was extracted from buccal swabs. Genotyping was performed using TaqMan® SNP genotyping assays, Applied Biosystems Inc., CA. No SNP showed a significant deviation from HWE. Allelic association study was performed using Plink v1.07 [6]. #### **Previous meta-analyses** Five genes investigated in our study have been previously investigated in other meta-analyses. These are: *OXTR*, *RELN*, *HOXA1*, *MTHFR*, and *SLC6A4*. *HOXB1* was previously analysed using meta-analysis and was not re-investigated in our study as there was no new data to include. Our study differs from that of LoParo and Waldman [7], who carried out a meta-analysis of *OXTR* and ASC, as they included FBAT studies in their analyses. We excluded studies that used FBAT as FBAT does not report effect sizes. However, we included three additional cohorts, unpublished genotype data from two cohorts from our lab, and a third cohort studied by Nyffeler and colleagues [8]. Of the three variants significant in the previous study, rs237887 andrs2268491 were significant in our study. We did not have enough data to test the third significant variant (rs7632287). A previous ASC and *RELN* meta-analysis [9] investigated three variants (rs736707, rs362691, and the GGC repeat), with only rs362691 giving a statistically significant P-value. In our study, we re-investigated the first two variants using data from additional cohorts. rs736707 was nominally significant and rs362691 was significant in our study. We did not identify any additional data for the GGC repeat and hence did not investigate it in our study. Additionally, we identified a fourth variant in the *RELN* gene, rs2073559, which was not investigated by the previous meta-analysis. This variant was not significant in our study. We analysed both the variants investigated in a previous meta-analysis [10], of *MTHFR* and ASC, including data from two additional studies for rs1801133 and one additional study for rs1801131. The results were similar to the previous results obtained. rs1801133 was significant whereas rs1801131 was not. While the previous study stratified based on folate fortification, we did not conduct these analyses due to insufficient data on folate fortification. We re-investigated rs10951154 in *HOXA1* which was investigated in an earlier meta-analysis [11]. We included data from the Chakrabarti 2009 cohort in our study, which was not included in the earlier study. While the previous study carried out analyses stratified by ethnicity, they did not stratify the data based on study methodology, differing from our study. We did not identify any additional data from the *HOXB1* variant, rs72338773, investigated in the previous study [11] and hence did not re-investigate that variant. Finally, *SLC6A4* has been investigated for ASC using meta-analysis in an earlier study [12]. We extend their work for 5-HTTLPR by using additional data and investigate two additional variants (rs2020936 and rs2020942) in our study. We did not identify any additional data for STin2 VNTR and hence did not re-investigate it. #### References - 1. Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C, et al. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009; 2: 157-77. - 2. Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism. 2014; 5:48. - 3. Durdiaková J, Warrier V, Baron-Cohen S, Chakrabarti B. Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism. 2014; 5:25 - 4. Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism. 2013; 4: 48 - 5. Durdiaková J, Warrier V, Banerjee-Basu S, Baron-Cohen S, Chakrabarti B. STX1A and Asperger syndrome: a replication study. Mol Autism. 2014; 5:14 6. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559-575. - 7. LoParo D, Waldman ID. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. *Mol Psychiatry* 2014 [Epub ahead of print] - 8. Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grünblatt E. Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. *J Mol Psychiatry* 2014; **2:** 1 - 9. Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N *et al.* Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. *Am J Med Genet B Neuropsychiatr Genet* 2014; **165B:** 192-200. - 10. Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. *Autism Res* 2013; **6:** 384-92. - 11. Song RR, Zou L, Zhong R, Zheng XW, Zhu BB, Chen W *et al.* An integrated meta-analysis of two variants in HOXA1/HOXB1 and their effect on the risk of autism spectrum disorders. *PLoS One* 2011; **6:** e25603. 12. Huang CH, Santangelo SL. Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. *Am J Med Genet B Neuropsychiatr Genet* 2008;**147B:** 903-13.